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Figure 1: The framework of CoSMIG. We first extract a subgraph around each interaction and train a communicative subgraph graph neural
network to map subgraphs to interactions. Each subgraph is induced by the drug and gene associated with the target interaction as well as

their h-hop neighbors (here h = 3). Finally, the learned subgraph embedding of each interaction is used to predict the various interactions
between drug and gene.
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Figure 1: The framework of CoSMIG. We first extract a subgraph around each interaction and train a communicative subgraph graph neural
network to map subgraphs to interactions. Each subgraph is induced by the drug and gene associated with the target interaction as well as
their h-hop neighbors (here h = 3). Finally. the learned subgraph embedding of each interaction is used to predict the various interactions
between drug and gene.
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Figure 1: The framework of CoSMIG. We first extract a subgraph around each interaction and train a communicative subgraph graph neural N{k} Ane E(R —1) (;}}
network to map subgraphs to interactions. Each subgraph is induced by the drug and gene associated with the target interaction as well as agg =

their h-hop neighbors (here h = 3). Finally. the learned subgraph embedding of each interaction is used to predict the various interactions

between drug and gene. N{k} ((N(k) —I—N(k 1})“7{_:‘;}) (f}}

agg

A" and A7

which represents the node-to-edge and relation type-to-edge
adjacency matrix, respectively.
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Figure 1: The framework of CoSMIG. We first extract a subgraph around each interaction and train a communicative subgraph graph neural 7:;: _ “LUT o ( W h) (] | )
network to map subgraphs to interactions. Each subgraph is induced by the drug and gene associated with the target interaction as well as A h

their h-hop neighbors (here h = 3). Finally. the learned subgraph embedding of each interaction is used to predict the various interactions

between drug and gene.
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Dataset DrugBank DGldb
Number of Drug 425 1183
Number of Gene 11284 1664
[nteractions 80924 11366
Interaction types 2 14

Table 1: Statistics of two Drug-Gene Interaction datasets
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Experiments
DrugBank DGIdb
Methods Features Validation Ind. Test Validation Ind. Test
ACC ACC ACC ACC

MC no = 0.518 £ 0.013 2 0.559 4+ 0.009
ME-based GRALS yes = 0.532 £ 0.021 - 0.578 £ 0.016
F-EAE no - 0.566 =+ 0.004 - 0.623 4+ 0.003
GC-MC yes = 0.586 + 0.008 2 0.601 4 0.005
sRGCNN yes = 0.602 £ 0.010 - 0.689 £+ 0.007
GNN-based psiige yes - 0.629 =+ 0.004 - 0.713 + 0.005
IGMC no = 0.634 + 0.003 = 0.803 £+ 0.006
CoSMIG-w/GCN no 0.562 £ 0.004 0581 £0.004 0778 £0.023 0.803 £ 0.009
CoSMIG-w/GraphSAGE no 0.584 £ 0.003 0602+ 0008 0807 +0.014 0.814+0.010
CoSMIG-w/RGCN no 0.614 £ 0.004 0.637+0.005 0.821+0.013 0.832+0.002
Proposed CoSMIG-w/AvgzPooling no 0619 +0003 06434+0006 0.8224+0006 0.8351+0.003
CoSMIG-w/SumPooling no 0.625 £ 0.004 0.655+0.003 0.824 £0.007 0.839 4+ 0.004
CoSMIG-w/SortPooling no 0.639 £ 0.002 0.667 £0.004 0.833 £0.003 0.841 £ 0.005
CoSMIG no 0.658 = 0,008  0.678 = 0,003 0.840 = 0.011 0.852 + 0.012

Table 2: The comparison of different methods by the overall accuracy on the DrugBank and DGIdb datasets in transductive scenario.
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DrugBank DGIdb

ACC A ACC A
IMC 0441 148% 0424 242%
F-EAE 0474 163% 0532 14.6%
GC-MC 0513 124% 0553 7.99%
GNN-based  PinSage 0.567 9.86% 0654 8.27%
IGMC 0612 347% 0778 3.11%

Proposed  CoSMIG 0.672 0.88% 0842 1.17%

Methods

MF-based

Table 3: Performance on the inductive scenario. A represents the
decline rate between the transductive scenario and the inductive sce-
nario of each model.
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Figure 2: Evaluating the effect of Subgraph Extraction on DrugBank
and DGIdb.
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Figure 3: (A) The accuracy of each interaction type for DGIdb, and
the pairs projected by t-SNE for (B) DGIdb and (C) DrugBank.
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